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Abstract—As a vital process to the success of an organiza-
tion, salary benchmarking aims at identifying the right market
rate for each job position. Traditional approaches for salary
benchmarking heavily rely on the experiences from domain
experts and limited market survey data, which have difficulties
in handling the dynamic scenarios with the timely benchmarking
requirement. To this end, in this paper, we propose a data-driven
approach for intelligent salary benchmarking based on large-
scale fine-grained online recruitment data. Specifically, we first
construct a salary matrix based on the large-scale recruitment
data and creatively formalize the salary benchmarking problem
as a matrix completion task. Along this line, we develop a
Holistic Salary Benchmarking Matrix Factorization (HSBMF)
model for predicting the missing salary information in the salary
matrix. Indeed, by integrating multiple confounding factors,
such as company similarity, job similarity, and spatial-temporal
similarity, HSBMF is able to provide a holistic and dynamic
view for fine-grained salary benchmarking. Finally, extensive
experiments on large-scale real-world data clearly validate the
effectiveness of our approach for job salary benchmarking.

Index Terms—Salary Benchmarking, Talent Recruitment, Ma-
trix Factorization

I. INTRODUCTION

Compensation and Benefits (C&B), one of the most impor-
tant sub-disciplines of human resources, plays an indispensable
role in attracting, motivating and retaining talents. A major
part of C&B planning is salary benchmarking, which has a
goal of identifying the market pay scales of employees with
respect to different job positions. Indeed, comprehensive and
accurate salary benchmarking can help companies to keep and
strengthen their core competitiveness in the market.

Traditional approaches for salary benchmarking rely heavily
on the experience from domain experts and market surveys
provided by third-party consulting companies and govern-
mental organizations [1]–[3], such as OECD [4]. However,
the rapidly evolving technology and industrial structure result
in the variation of positions and job requirements, leading
to the difficulties in timely salary benchmarking under a
dynamic scenario. For example, it is nontrivial for traditional
approaches to timely benchmark salaries in the scenarios
where there are millions of job-company combinations with
respect to many possible work locations and time periods.

*Hui Xiong and Hengshu Zhu are the corresponding authors.

Recently, the prevalence of emerging online recruitment
services, such as Glassdoor, Indeed and Lagou, provide oppor-
tunities to accumulate massive job related-data from a wide
range of companies, and thus enable a new paradigm for
salary benchmarking in a data-driven way. To this end, in
this paper, we propose a method for intelligent salary bench-
marking based on large-scale fine-grained online recruitment
data. Specifically, we first construct an expanded salary matrix
based on the recruitment data, in which time-specific job
positions and location-specific companies are represented as
rows and columns. In this way, the problem of salary bench-
marking can be naturally formalized as a matrix completion
task. Along this line, we develop a Holistic Salary Bench-
marking Matrix Factorization (HSBMF) model for predicting
the missing salary information in the salary matrix. Also, by
integrating multiple confounding factors, such as company
similarity, job similarity, and spatial-temporal similarity, the
HSBMF model can provide a holistic and dynamic view of
salary benchmarking. Indeed, with the help of HSBMF, we can
obtain fine-grained salary benchmark with respect to different
companies, job positions, time periods and locations. At last,
we conduct extensive experiments based on large-scale real-
world recruitment data to validate the effectiveness of our
approach in terms of accurately identifying the market rates
for job positions in various contexts.

To be specific, the contributions of this paper can be
summarized as follows:

• We propose a novel approach HSBMF for large-scale
fine-grained job salary benchmarking based on the mas-
sive online recruitment data.

• We propose and validate four domain assumptions with
respect to the recruitment market, and integrate them as
confounding constraints into HSBMF, which can provide
a holistic view of salary benchmarking.

• We evaluate the proposed approach with extensive ex-
periments on a large-scale real-world dataset. The results
clearly validate the effectiveness of our approach.

II. PRELIMINARIES

In this section, we briefly introduce the recruitment data
used in our study and formalize the problem of fine-grained
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Fig. 1. A snippet of salary distribution in our data. Here, each grid represents
a specific job position or company.

salary benchmarking. Also, we discuss the numerical charac-
teristics of the data related to the design of our model.

A. Data Description

In this paper, we aim to develop an effective method for
salary benchmarking based on massive online recruitment
data. Our data were collected from a major online recruitment
website in China, which consist of more than 700,000 job
postings from more than 50,000 high-tech companies during
a three-year time interval. The information of each job posting
contains posting time, job details (e.g., job title, work location
and job description), company details (e.g., company name,
industry category, company size, and financial stage), and a
scale of expected monthly salary (e.g., lower bound and upper
bound). To facilitate the understanding of our data, we provide
several posting examples in Table I. More details of the data
will be discussed in Section IV. Indeed, the information similar
to our recruitment data is generally available worldwide.
Therefore, the method developed in this paper should be able
to easily applied to a broader job market.

One of the most important jobs for C&B is salary bench-
marking, which aims at identifying the appropriate market pay
scale for each job position. One intuitive solution is to predict
salary scales with respected to specific job requirements.
However, based on real-world cases, it can be commonly
found that companies offer different pay levels to similar
job positions. Even for the same job-company combinations,
salaries vary a lot at the different time and work locations. For
example, one corporation may offer quite different salaries to
two software developers, of which one works at New York
while the other works at Nashville, even though their work
duties are similar. Thus, we believe it is necessary to develop
a more delicate salary benchmarking method to support the
decision making process for C&B. An effective approach for
salary benchmarking should be able to handle job positions
of different companies under different contexts, such as work
locations and posting time.

Figure 1 demonstrates a snippet of salary distribution in our
real-world dataset. We randomly selected eight job positions
and companies and plot their salary heatmap at different
locations and time periods. As can be seen, salaries at different

time intervals and locations vary a lot. Unfortunately, due to
a large number of job-company-context combinations, it is
impossible to directly obtain all of their salary observations,
even for the massive online recruitment data, as the blank
areas presented in Figure 1. Therefore, in this paper, we
propose a novel approach for fine-grained salary benchmarking
to effectively predict expected salaries for unobserved job-
company-context combinations.

B. Fine-Grained Salary Benchmarking

Traditionally, the problem of salary benchmarking is to esti-
mate the expected salary level (e.g., the lower/upper bound of
salary) of each job position offered by a specific company. The
classical method is straightforward and a common procedure
is as follows. It firstly constructs a job-company salary matrix,
where each entry indicates the corresponding salary. Then, it
formalizes the problem as a matrix completion task. However,
an important issue is that the traditional method is usually too
general to satisfy various special needs of C&B professionals,
because only the job-company matrix is considered. To this
end, we propose to address the salary benchmarking problem
in a fine-grained manner by considering more contextual
information, such as work locations and posting time. To
be specific, we define the problem of fine-grained salary
benchmarking as follows.

Problem Statement (Fine-Grained Salary Benchmarking):
Given a specific combination of companies, work loca-
tions, and posting time, the objective is to estimate the
expected salary level of each job position (e.g., estimating the
lower/upper bound of the salary for a software engineer of a
company located in NYC in the first half year of 2017).

To address the problem, we propose an expanded salary
matrix by expanding original job-company salary matrix with
locations and time information. For example, Figure 2 shows
the structure of our expanded salary matrix, where the com-
pany and job dimensions are expanded with work locations
and posting time respectively. One motivation for the matrix
expanding process is that each company usually has multiple
work sites for talent recruitment, while the salary of each job
position drifts along time. A more sophisticated explanation
to the design of the salary matrix is highly related to the data
characteristics, and we will provide more detailed discussions
in Section II-C. Along this line, the problem of fine-grained
salary benchmarking is naturally equivalent to the task of
estimating missing values in the expanded salary matrix.

C. Numerical Characteristics of the Data

Before introducing the technical details of our approach
to job salary benchmarking, here we discuss some important
numerical characteristics, which may significantly affect job
salaries and motivate the design of our HSBMF model.

First, we check the relationship between job similarity
and salary. Intuitively, positions with similar job descriptions
should have similar salary scales. Therefore, the similarities
between job positions should be negatively correlated to



TABLE I
SOME TOY EXAMPLES OF JOB POSTINGS IN OUR DATASET.

ID Job Title Company Name Company Size Work Location Posting Time Salary Lower Bound Salary Upper Bound Industry Financial Stage Job Description

1 Java Developer Baidu 2,000 and above Beijing June. 24, 2015 5,000 10,000 Mobile Internet Published Familiar with java · · ·

2 C++ Engineer Meituan 2,000 and above Shenzhen Aug. 23, 2016 8,000 15,000 E-commerce Published Have experience with C++ · · ·

3 Product Manager SiyuanTech 50-150 Shanghai Sep. 10, 2016 15,000 25,000 Mobile Internet Series A Responsible for project tasks· · ·
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Fig. 2. The structure of the expanded salary matrix.

related salary differences. Following that, we calculate the
pair-wise similarities between its job descriptions and corre-
sponding salary differences, and then compute their Pearson
correlation coefficient (The details of how to calculate the
pair-wise similarities will be introduced in Section III-B.).
Figure 3 (a) shows the sorted “job similarity-salary difference”
correlations grouped by companies. As can be seen, most of
the correlations fall into the negative range, which is consistent
with our domain assumption.

Second, we study the relationship between company similar-
ity and job salary. Intuitively, companies in the same business
sector and with comparable sizes should provide positions with
similar rate scales. Thus, the similarities between companies
should have a negative correlation with their salary differences.
We follow the similar approach as discussed before to calcu-
late the “company similarity-salary difference” correlation for
every job position. The result is plotted in Figure 3 (b), and
we find it is consistent with our assumption as well.

Third, we investigate the relationship between posting time
and salary. We group the data in two ways for calculating the
correlations. Intuitively, the differences of job salary should
have the positive correlation with their posting time intervals.
Thus, we calculate the “time interval-salary differences” Pear-
son correlation coefficient for every job position and company
respectively and report the results in Table II. We can observe
that the correlations are positive for both grouping methods.
Moreover, it can be found that the correlation grouped by job
positions is higher than that grouped by companies, indicating
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Fig. 3. The correlation between job/company similarity and salary difference.

a stronger “time interval-salary difference” relationship when
grouping the data by job positions.

Last, we investigate the relationship between work location
and job salary. We also group the data by job positions
and companies respectively. Intuitively, the differences of job
salary should hold a positive correlation with the average
revenues of their work locations. To this end, we calculate the
Pearson correlation between the government-released average
revenues and corresponding average job salaries in different
locations. The results are report in Table II. The positive
values clearly support our domain assumption. Moreover,
the correlations grouped by companies are higher than that
grouped by job positions, suggesting a stronger “location
similarity-salary difference” relationship when grouping the
data by companies.

Following the above results, we design the expended salary
matrix as demonstrated in Fig 2 (i.e., time-specific job po-

TABLE II
THE PEARSON CORRELATION BETWEEN POSTING TIME/WORK LOCATION

SIMILARITY AND SALARY DIFFERENCE.

Lower Bound

Grouping Method
Time-Salary Location-Salary

Mean Median Mean Median

Job Position 0.341 0.802 0.248 0.528

Company 0.244 0.734 0.328 0.738

Upper Bound

Grouping Method
Time-Salary Location-Salary

Mean Median Mean Median

Job Position 0.281 0.701 0.208 0.465

Company 0.222 0.697 0.354 0.751



sitions and location-specific firms are represented as rows
and columns). In summarize, we identify four confounding
factors, including job similarity, company similarity, and time-
spatial similarities, which have significant impacts on salary
benchmarking. In Section III-B, we will provide technical
details regarding how we calculate those similarities and
integrate them into HSBMF model for higher performance.

III. MATRIX FACTORIZATION FOR SALARY
BENCHMARKING

In this section, we introduce the technical details of our
HSBMF model for fine-grained salary benchmarking. Impor-
tant mathematical notations used throughout this paper are
summarized in Table III.

A. A Basic Model
Matrix Factorization (MF) is among the most widely-used

methods for recommendation systems. It aims to factorize an
incomplete user-item rating matrix into two lower rank latent
matrices, and use their dot product for estimating the possible
ratings of the missing entries. In this paper, we follow the idea
of biased SVD (bSVD) for salary benchmarking as suggested
by [5], [6]. Specifically, given an entry S(j, c) in expanded
salary matrix S, the predictor is equal to

Ŝ(j, c) ≈ µ+Bj(j) +Bc(c) + J(j, :)C(c, :)T , (1)

where µ, Bj , Bc denote the global mean of S, the bias vector
of job position, and the bias vector of company, respectively.
Furthermore, by adding Frobenius norm regularization terms
for avoiding the ill-posed problem [7], [8], we can formulate
the preliminary loss function for salary benchmarking as

min : F =

M∑
j=1

N∑
c=1

(Is(j, c) ◦ (S(j, c)− Ŝ(j, c)))2 (2)

+λJ ||J ||2F + λC ||C||2F + λBj ||Bj ||2F + λBc ||Bc||2F ,

where ◦ means element-wise multiplication of two matrices,
and IS is the indicator matrix of S, which is defined as

IS(j, c) =

{
1, S(j, c) exists,
0, else. (3)

B. HSBMF with Holistic Constraints
To further refine the performance of salary benchmarking,

we integrate more confounding factors as constraints into
Equation 2, including the company similarity, job similarity,
and spatial-temporal similarity.

The first constraint is to reveal the relationship between
job similarity and salary. Intuitively, job positions with similar
job descriptions tend to have similar salary scales. Thus, we
formulate the Job Similarity Regularizer as

RJ =
1

2

M∑
j=1

M∑
j′=1

Sj(j, j
′
)||J(j, :)− J(j

′
, :)||2F

=

M∑
j=1

M∑
j′=1

K∑
k=1

Sj(j, j
′
)J(j, k)

2 −
M∑
j=1

M∑
j′=1

K∑
k=1

Sj(j, j
′
)J(j, k)J(j

′
, k)

=

K∑
k=1

J(:, k)
T
(DSj

− Sj)J(:, k)

= tr(J
T
(DSj

− Sj)J).

(4)

TABLE III
THE MATHEMATICAL NOTATIONS.

Symbol Description
S ∈ RMN The expanded salary matrix
Is ∈ RMN The indicator matrix of S
J ∈ RMK The latent factor matrix of job position
C ∈ RNK The latent factor matrix of company
Sj ∈ RMM The similarity matrix of job position
Sc ∈ RNN The similarity matrix of company
T ∈ RMM The temporal transition matrix
L ∈ RNN The location awareness matrix
Bj ∈ RM1 The bias vector of job position
Bc ∈ RN1 The bias vector of company
JT , CT The transpose matrix of J,C
µ The global mean of expanded salary matrix
γ The learning rate
j, j′ A row in J
c, c′ A row in C

where tr(·) represents the matrix trace, and Sj(j, j
′) is

the similarity between two job positions j and j′, which is
estimated by the Cosine similarity between the TF-IDF vectors
of corresponding job descriptions. DSj

is the degree matrix
of Sj , which is defined as

DSj (u, v) =

{ ∑M
v=1 Sj(u, v), if u = v,

0, else.
(5)

Here, we use the job similarity matrix Sj to regularize
the learning process of job position latent matrix J , which
guarantees that the components of J will be similar if their
corresponding job descriptions are similar.

Second, we propose another Company Similarity Regu-
larizer, which guarantees that similar companies should offer
jobs with similar salary levels. Specifically, the regularizer is
formulated as

RC =
1

2

N∑
c=1

N∑
c′=1

Sc(c, c
′)||C(c, :)− C(c′, :)||2F (6)

= tr(CT (DSc − Sc)C),

where Sc(c, c
′) is the similarity between two companies c and

c′, which is estimated by the Jacquard similarities between
the basic information of companies, such as company size,
industry category, and financial stage. Similarly, DSc is the
degree matrix of Sc, which is defined as

DSc(u, v) =

{ ∑N
v=1 Sc(u, v), if u = v,

0, else.
(7)

In addition to the above constraints, we also propose to
explore spatial-temporal related regularizers. Specifically, we
propose a Time-Aware Regularizer to evaluate the relationship
between posting time and salary. Intuitively, the differences of
salaries should have the positive correlation with their posting
time intervals. To this end, inspired by [9], [10], we assume
that the salary of a job at the current time is influenced by its
historical salaries, and the degree of influences is affected by



corresponding time spans. Therefore, we define the temporal
correlation ρ(j, j′) between job j and j′ as

ρ(j, j′) = exp(−α|τj − τj′ |), (8)

where α is a positive parameter that controls the temporal
evolutionary process, and τj is the posting time of job position
j (note that, in the expanded salary matrix, every job position
is associated with a posting time). Moreover, if α = 0,
all job salaries have equal correlations without considering
corresponding time spans. On the contrary, if α → +∞,
salaries of jobs will not have any temporal relationships.
Furthermore, the time-aware regularizer can be defined as

RT =
1

2

M∑
j=1

M∑
j′=1

T (j, j′)||J(j, :)− J(j′, :)||2F (9)

= Tr(JT (DT − T )J),

DT (u, v) =

{ ∑M
v=1 T (u, v), if u = v,

0, else.
(10)

T is a temporal transition matrix, which is defined as

T =



1 ρ(1, 2) · · · ρ(1,M)

ρ(2, 1) 1 · · · ρ(2,M)

...
...

...
...

ρ(M, 1) ρ(M, 2)
... 1


MM

. (11)

Finally, we introduce the Location-Aware Regularizer to
evaluate the relationship between work locations and salary.
Indeed, the salaries of job positions have positive correlations
with the average income levels of their work locations. Thus,
we define a location awareness matrix L to depict the relation-
ship between two jobs positions in different work locations,
of where ϕ(c, c′) denotes the entry, which can be computed
as follows:

ϕ(c, c
′) = 1− |ASc −ASc′ |

max(ASc, ASc′)
, (12)

where ASc is the average salary of company c’s location
(note that, in the expanded salary matrix, every company is
associated with a specific location). Furthermore, we define
the location-aware regularizer as

RL =
1

2

N∑
c=1

N∑
c′=1

L(c, c′)||C(c, :)− C(c′, :)||2F (13)

= Tr(CT (DL − L)C),

DL(u, v) =

{ ∑N
v=1 L(u, v), if u = v,

0, else.
(14)

With above holistic constraints, we can obtain the final loss
function of our HSBMF model by integrating Equation 2 with
all regularizers. That is,
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Fig. 4. The graphical representation of our HSBMF model.

min : F =
1

2

( M∑
j=1

N∑
c=1

(Is(j, c) ◦ (S(j, c)− Ŝ(j, c)))2 (15)

+λJ ||J ||2F + λC ||C||2F + λBj ||Bj ||2F + λBc ||Bc||2F
+λSj tr(J

T (DSj − Sj)J) + λSctr(C
T (DSc − Sc)C)

+λT tr(J
T (DT − T )J) + λLtr(C

T (DL − L)C)
)
.

In summary, Figure 4 shows the graphical representation of
the HSBMF model.

C. Algorithm Optimization

Here, we introduce how to use the gradient descent approach
to learn our HSBMF model. The goal is to learn the parameters
J , C, Bj and Bc. Specifically, with the partial derivatives of
F in (15), we have

∂F
∂J(j, k)

= −
∑

c∈IJ (j)

(S(j, c)− Ŝ(j, c))C(c, k) + |IJ(j)|

×
(
λSj (DSj − Sj)J(j, k) + λT (DT − T )J(j, k) + λjJ(j, k)

)
,

∂F
∂C(c, k)

= −
∑

j∈IC(c)

(S(j, c)− Ŝ(j, c))J(j, k) + |IC(c)|

×
(
λSc(DSc − Sc)C(c, k) + λL(DL − L)C(c, k) + λcC(c, k)

)
,

∂F
∂Bj(j)

= −
∑

c∈IJ (j)

((S(j, c)− Ŝ(j, c)) + |IJ(j)|λBjBj(j),

∂F
∂Bc(c)

= −
∑

j∈IC(c)

((S(j, c)− Ŝ(j, c)) + |IC(c)|λBcBc(c),

where IJ(j) denotes the set of companies at where Is(j, :)
existing values, while IC(c) denotes the set of job positions
at where Is(:, c) existing values.

Denoting the learning rate by γ, we get the updating rules
of HSBMF as follows:



J(j, k)←J(j, k) + γ
( ∑

c∈IJ (j)

(
S(j, c)− Ŝ(j, c)

)
C(c, k)

−|IJ(j)| ×
(
λSj (DSj − Sj)J(j, k)

+λT (DT − T )J(j, k) + λjJ(j, k)
))
,

(16)

C(c, k)←C(c, k) + γ
( ∑

j∈IC(c)

(
S(j, c)− Ŝ(j, c)

)
J(c, k)

−|IC(c)| ×
(
λSc(DSc − Sc)C(c, k)

+λL(DL − L)C(c, k) + λcC(c, k)
))
,

(17)

Bj(j)←Bj(j) + γ
( ∑

c∈IJ (j)

(
S(j, c)− Ŝ(j, c)

)
−|IJ(j)|λBjBj(j)

)
,

(18)

Bc(c)←Bc(c) + γ
( ∑

j∈IC(c)

(
S(j, c)− Ŝ(j, c)

)
−|IC(c)|λBcBc(c)

)
.

(19)

Here, we summarize the steps of optimization. First, we
extract raw data from our dataset and construct the expanded
salary matrix S, and calculate global mean µ. Second, we
calculate four auxiliary matrices, i.e.,Sj , Sc, T , and L, with
corresponding degree matrices, i.e., DSj , DSc , DT , and DL.
At last, the matrices J , C, Bj and Bc are initialized with
random values and are updated with gradient decent rules. In
particular, to improve the efficiency, we also introduce two
variables AuxiliaryJ , AuxiliaryC for avoiding the dot pro-
duction of large-scale matrices in each iteration. Specifically,
Algorithm 1 describes the detailed optimization process of
the HSBMF model. Note that our software implementation
is available from our project website1.

Last, we analyze the computation complexity of algorithm
1. There are three layers of iterations in the algorithm. If we
don’t consider some fast algorithms for matrix multiplication,
steps 3-4 need O(M2 +N2)K time. Steps 6-10 need O(K)
time. Steps 12-15 need O(K) time. Steps 6-10 combined
with steps 12-15 need O(|IJ ||IC |)K time, and steps 3-4
combined with steps 6-15 need O

(
(M2 + N2 + |IJ ||IC |) ×

K ×Max Iter
)

time, which is the computation complexity
of our algorithm.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the HSBMF
model for salary benchmarking.

1https://github.com/homeinsky/Salary-Benchmark-With-Matrix-
Factorization

Algorithm 1 HSBMF Optimization
Input:

S,Sj ,Sc,T ,L,DSj
, DSc

,DT ,DL,µ
λj ,λc,λSj

,λSc
,λT ,λL,λBj

,λBc
,γ,α

Output: J , C, Bj , Bc

1: Initialize J , C, Bj , Bc with random values
2: while Iterations < Max Iter do
3: AuxiliaryJ =

(
λSj

(DSj
−Sj)+λT (DT −T )+λj

)
J

4: AuxiliaryC =
(
λSc

(DSc
−Sc)+λL(DL−L)+λc

)
C

5: for each (j, c) in the S do
6: Ŝ = µ+Bj(j) +Bc(c) + J(j, :)C(c, :)T

7: err = S − Ŝ
8: # update bias Bj and Bc

9: Bj(j) = Bj(j) + γ
(
err − λBj

Bj(j)
)

10: Bc(c) = Bc(c) + γ
(
err − λBc

Bc(c)
)

11: # update J and C
12: for each k do
13: J(j, k) = J(j, k) + γ

(
err ∗ C(c, k) −

AuxiliaryJ(j, k)
)

14: C(c, k) = C(c, k) + γ
(
err ∗ J(j, k) −

AuxiliaryC(c, k)
)

15: end for
16: end for
17: end while
18: return C,J ,Bj ,Bc

A. The Experimental Setup

As introduced in Section II, the real-world dataset was
collected from a major online recruitment website in China,
which consists of millions of job postings from thousands of
high-tech companies from July 2013 to October 2015. To guar-
antee the effectiveness of our experiments, we preprocessed
the data with the following steps. First, we removed the dupli-
cates and structured job postings, and filtered companies that
published less than 20 job postings, and job positions that ap-
peared less than five times. Second, we only selected five large
work locations in our dataset, including., “Beijing”, “Shang-
hai”, “Guangzhou”, “Shenzhen” and “Hangzhou”, since more
than 80% job postings are located in these cities. Third,
we grouped the posting time into 5 time periods, i.e., every
half year belongs to one time period. Finally, we manually
normalized different job titles, and grouped the similar titles
into the same job position. After data preprocessing, we kept
132, 061 job postings which belong to 1, 795 job positions
from 1, 788 companies. The sparsity of the expanded salary
matrix is 99.5%. We can observe the companies’ distribution
over locations and their salary differences from Figure 5. We
also plotted the scatter bubble chart for each location and
time period in Figure 6. The five different colors represent
five cities. The bubble scale is proportional to the number of
distinct job positions. From the figure, we can observe that as
time approaching recent, the number of distinct job positions
and companies arises rapidly in Beijing, while that of the other
cities arise mildly, which means the dataset is unbalanced over



(a) Lower Bound (b) Upper Bound

Fig. 5. The bubble chart of salary, where each bubble represents a company,
and the scale is proportional to the value.

(a) Lower Bound (b) Upper Bound

Fig. 6. The scatter bubble chart for each location and time period, where
each bubble represents a time-specific city, and the scale is proportional to
the number of distinct positions.
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Fig. 7. The salary distribution in our dataset.

locations. The salary of Beijing increases along with time, and
tend to be the highest, yet the salaries in five cites are close
to each other, which are accord with the facts that Beijing
has the highest government-released average revenues, but the
differences among the five cities are small.

In the experiments, the salary range was segmented into
several discrete levels rather than the original values due to
the unbalanced long tail distribution of salaries as shown
in Figure 7, where we can observe that about 80% data

TABLE IV
THE SEGMENTATION OF SALARY.

Lower Bound (CNY) Upper Bound (CNY)
Level 1 ≤ 5,000 ≤ 9,000
Level 2 (5,000, 8,000] (9,000, 14,000]
Level 3 (8,000, 10,000] (14,000, 20,000]
Level 4 (10,000, 15,000] (20,000, 28,000]
Level 5 > 15,000 > 28,000

records have the salary lower bound below 10K per month
and 60% data records have the salary upper bound below
20K per month. Specifically, we first sorted the salary values
and calculated their adjacent differences. Then, we chose four
points where the adjacent differences vary dramatically as the
segmentation points. After this process, the lower and upper
bound of salaries were both classified into 5 levels, which are
shown in Table IV. Note that, in the experiments, we evaluated
the performance of HSBMF on the lower bound and the upper
bound of salary, respectively.

B. Benchmark Methods

To evaluate the performance of HSBMF for salary bench-
marking, we chose a number of state-of-the-art methods for
comparisons. Specifically, we chose four popular MF based
approaches, namely SVD, bSVD [11], NMF [7], PMF [12],
and a Collaborative Filtering (CF) based approach as baselines.
Those methods are commonly used in recommender systems
and achieved considerable success. We briefly introduce them
in the following.

- SVD: Derived from Singular Vector Decompose concept
in mathematics, SVD is basically used in the early
recommender systems.

- bSVD: bSVD refers to SVD with strategy of adding
biases in this paper.

- NMF: NMF factorizes a matrix into two non-negative
lower rank latent matrices.

- PMF: PMF factorizes a matrix into two matrices, which
adopt zero-mean spherical Gaussian priors.

- CF: The basic CF method recommends items based on
the similarity of users or items. In this research, we utilize
the company similarity for salary prediction.

In the experiments, we used Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) to evaluate each
approach. Specifically, the two metrics are defined as

RMSE =

√∑Num
i (Si − Ŝi)2

Num
, (20)

MAE =

∑Num
i |Si − Ŝi|
Num

, (21)

where Si is the actual salary value, while Ŝi is the estimated
salary value, and Num is the number of test instances.



TABLE V
THE RMSE PERFORMANCE OF 5-FOLD CROSS VALIDATION.

Lower Bound
MODEL HSBMF bSVD SVD NMF PMF CF
fold1 0.7763 0.8091 0.8214 0.8316 0.8287 0.8980
fold2 0.7803 0.8135 0.8261 0.8421 0.8334 0.8860
fold3 0.7844 0.8154 0.8312 0.8360 0.8380 0.8912
fold4 0.7702 0.7982 0.8194 0.8264 0.8265 0.8927
fold5 0.7799 0.8111 0.8320 0.8408 0.8277 0.8954

Upper Bound
fold1 0.7750 0.8069 0.8309 0.8368 0.8355 0.9015
fold2 0.7785 0.8007 0.8188 0.8323 0.8375 0.9005
fold3 0.7759 0.8070 0.8249 0.8312 0.8363 0.9012
fold4 0.7738 0.8022 0.8186 0.8293 0.8302 0.8930
fold5 0.7706 0.8033 0.8213 0.8300 0.8283 0.8968

TABLE VI
THE MAE PERFORMANCE OF 5-FOLD CROSS VALIDATION.

Lower Bound
MODEL HSBMF bSVD SVD NMF PMF CF
fold1 0.5957 0.6165 0.6156 0.6219 0.6288 0.6880
fold2 0.5990 0.6212 0.6153 0.6277 0.6329 0.6758
fold3 0.6022 0.6234 0.6197 0.6242 0.6349 0.6789
fold4 0.5900 0.6072 0.6078 0.6148 0.6269 0.6760
fold5 0.5981 0.6184 0.6188 0.6262 0.6277 0.6804

Upper Bound
fold1 0.5927 0.6149 0.6184 0.6232 0.6321 0.6784
fold2 0.5914 0.6058 0.6069 0.6151 0.6312 0.6791
fold3 0.5906 0.6109 0.6139 0.6163 0.6298 0.6795
fold4 0.5899 0.6088 0.6082 0.6164 0.6282 0.6757
fold5 0.5857 0.6087 0.6094 0.6158 0.6271 0.6768

TABLE VII
PREDICTING SALARIES OF LAST PERIOD.

Lower Bound
MODEL HSBMF bSVD SVD NMF PMF CF
RMSE 0.7122 0.7259 0.7289 0.7259 0.7735 0.8299
MAE 0.5410 0.5418 0.5439 0.5418 0.5690 0.6396

Upper Bound
RMSE 0.7363 0.7529 0.7531 0.7529 0.7896 0.8690
MAE 0.5628 0.5635 0.5638 0.5635 0.5857 0.6718

C. The Overall Performance

We first evaluated the overall performances of HSBMF
model compared with other baselines. In the experiments, we
empirically set latent dimension K = 5 and the maximum
iteration rounds Max Inter = 100 for all MF based methods.
Furthermore, for HSBMF, we set the parameters as λj = 0.02,
λc = 0.02, λBj

= 0.02, λBc
= 0.02, λSj

= 1 × 10−4,
λSc = 1× 10−4, λT = 1× 10−4, λL = 1× 10−4, γ = 0.005,
and α = 2.

To validate the model performance, we also chose two kinds
of sampling strategies. The first one is 5-fold cross validation
with random 80%-20% splitting. The other method is only
sampling 10% records in the last period as the test data and
other historical data for model training. By sampling data

as the second way, we can evaluate whether HSBMF model
consistently outperforms other baselines for predicting salaries
at last period, which is more reasonable and applicable in real-
world scenarios.

Specifically, the overall RMSE and MAE results of different
approaches are shown in Tables V, VI, and VII respectively.
From the results, we can have the following observations. First,
HSBMF consistently achieves the best performance compared
with other baselines, which validates the effectiveness of
integrating more constraints as side information for salary
benchmarking. Second, bSVD is better than SVD and other
baselines, which indicates that adding bias is an effective strat-
egy. Indeed, the above results clearly validate the performance
of HSBMF model for salary benchmarking.

D. Evaluation on Model Constraints

In order to evaluate the influences of different constraints,
we randomly split the dataset into 5 folds for 10 times, and
conducted a set of experiments by adding different regularizer
separately. Finally, we compared the average RMSE and MAE
with bSVD, which is the preliminary model of HSBMF, and
then calculated the paired t-test for validating the improvement
significance. The experimental results are shown in Table VIII.
From the table, we can observe that all four constraints can
improve the basic bSVD model. Specifically, job position and
company similarity constraints can improve the model by
around 2.0% to 3.0%, while time and location related con-
straints can only have slight improvements. It might because
that we only use data records in five work locations and five
different time periods, where the average salary differences are
usually very small, which makes HSBMF not sensitive to λT
and λL. Nonetheless, the p-Values in all experiments are very
small, demonstrating that the improvements are statistically
significant for all four constraints.

E. Evaluation on Parameter Sensitivity

As discussed above, since HSBMF is not sensitive to λT
and λL, we fixed λT = 2 × 10−4 and λL = 2 × 10−4, and
evaluated the sensitivity of λSj and λSc by changing them
from 0 to 2×10−4. Figure 8 shows the RMSE and MAE results
with parameter tuning. In the figure, we can observe that the
performances of RMSE and MAE consistently decrease as
the increase of these two parameters. When λSj

and λSc
are

approaching to 2 × 10−4, the results achieve the best perfor-
mances. This means the job position similarity and company
similarity are effective factors for salary benchmarking.

V. RELATED WORK

In general, the related work of this study can be grouped
into two categories, namely salary analytics and MF based
recommendation models.

Salary analytics is a popular research topic in both man-
agement science and econometrics. The objectives of salary
analytics usually focus on the salary equity, satisfaction of
employees, and the confounding factors which potentially
influence the salary structures [1]–[3]. Traditional approaches
for salary analytics rely heavily on the experiences of domain



TABLE VIII
EVALUATION ON DIFFERENT CONSTRAINS.

MODEL Lower Bound Upper Bound
RMSE Improvement P-value MAE Improvement P-value RMSE Improvement P-value MAE Improvement P-value

bSVD 0.8095 - - 0.6174 - - 0.8054 - - 0.6111 - -
bSVD+Sj 0.7854 2.99% 4.64E-43 0.6025 2.41% 9.49E-39 0.7822 2.88% 4.03E-41 0.5951 2.61% 2.01E-38
bSVD+Sc 0.7908 2.32% 1.09E-35 0.6043 2.12% 2.38E-31 0.7862 2.39% 4.54E-41 0.5978 2.17% 1.33E-39
bSVD+T 0.8064 0.39% 1.59E-05 0.6153 0.34% 1.21E-04 0.8016 0.47% 1.41E-07 0.6083 0.46% 1.89E-06
bSVD+L 0.8043 0.65% 2.76E-12 0.6137 0.59% 6.72E-10 0.8000 0.68% 2.29E-12 0.6074 0.60% 1.99E-10
HSBMF 0.7775 3.96% 1.63E-38 0.5947 3.67% 4.27E-31 0.7778 3.44% 7.56E-37 0.5949 2.66% 5.27E-30

experts and the limited survey data from third parties. For
instance, [13] proposed to use Support Vector Machine based
on survey data for salary prediction. [14] proposed a Bayesian
regression model to predict salary with peer group effects
on a data set collected from nursing facilities. Recently, the
prevalence of online recruitment data has draw big attention
for recruitment analyses [15]–[19]. Specially, [20] proposed
a collaborative topic regression model, which could integrate
online public opinions for predicting job salaries. However,
this approach needs additional review data from former em-
ployees, and does not consider the influence of latent factors
such as job similarity and other contextual information.

MF techniques is widely used in recommender systems,
besides that, they also applied to a broad related areas, such as
social network analyses [21], [22], image tagging [23], docu-
ment clustering [24] and so on. The early MF model is based
on Singular Vector Decomposition(SVD), which is a well-
established technique for identifying latent semantic factors
[25]. The early SVD-based recommendation systems are prone
to distort the data and lead to the over-fitting problem, since
they applied imputation techniques, which fill the missing
values and make the rating matrix dense [26]. As a result,
researchers suggest only to model the ratings observed, and
add adequate regularizers to avoid over-fitting problems [6].
More recently, researchers proposed various improvements of
MF based recommendations. The most representative works
include biased SVD (bSVD), SVD++, NMF, and PMF. Specif-
ically, bSVD tries to use bias terms for capturing the latent
information associated with users or items [6], [11]. SVD++
interprets the data with the effect of “implicit” information
of users or items [5]. In addition, NMF also belongs to
MF families. However, different from SVD, NMF constrains
latent factors to be non-negative [27], [28]. Finally, PMF
places zero-mean spherical Gaussian priors on user and item
feature vectors [12], which usually passes the estimated values
through a logistic function to bound the range of predictions.
In order to solve the recommendation systems with additional
information, researchers proposed context-aware MF mod-
els [29], classifying the approaches into three categories: pre-
filtering, post-filtering, and contextual modeling. Item-splitting
[30] is one example of pre-filtering methods. It splits the
ratings and corresponding items into multiple virtual ratings
and items based on items’ subcategories. The post-filtering
strategy applies filtering or weighting after the traditional
approaches. [31] compared effectiveness and performances of
pre-filtering and post-filtering. It states that the better choice

of pre-filtering or post-filtering depending on the specific
methods. The last category is contextual approach, which uses
contextual information directly into a recommender model
[32]–[36]. One well-known method is tensor factorization
(TF) proposed by [37]. It factorizes a three-dimension tensor
into three feature matrices and one core matrix. However,
this method has two drawbacks: one is its rapid growth of
parameters and computational complexity; the other is its
limited application to categorical contextual variables. In the
paper [38], the authors demonstrated that MF-based models
can have comparable, and even better performances than TF-
based models, especially when data sets are small. Therefore,
in this paper, HSBMF is MF-based approach that integrates
holistic constraints for fine-grained salary benchmarking.

VI. CONCLUSIONS

In this paper, we studied the problem of salary bench-
marking through the analyses of massive online recruitment
data. Specifically, we formalized the problem as a matrix
completion task, and then developed a Matrix Factorization
(MF) based model named HSBMF for predicting the missing
salary information in the expanded salary matrix. A unique
perspective of HSBMF is that it can provide a holistic and
dynamic view of salary benchmarking by integrating mul-
tiple confounding factors, such as company similarity, job
similarity, and spatial-temporal similarity. Finally, extensive
experiments were conducted on large-scale real-world data,
and the results validated the effectiveness of HSBMF for
timely salary benchmarking requirement.
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